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SUMMARY

A finite volume, Boltzmann Bhatnagar–Gross–Krook (BGK) numerical model for one- and two-
dimensional unsteady open channel flows is formulated and applied. The BGK scheme satisfies the
entropy condition and thus prevents unphysical shocks. In addition, the van Leer limiter and the collision
term ensure that the BGK scheme admits oscillation-free solutions only. The accuracy and efficiency of
the BGK scheme are demonstrated through the following examples: (i) strong shock waves, (ii) extreme
expansion waves, (iii) a combination of strong shock waves and extreme expansion waves, and (iv) one-
and two-dimensional dam break problems. These test cases are performed for a variety of Courant
numbers (Cr), with the only condition being Cr51. All the computational results are free of spurious
oscillations and unphysical shocks (i.e., expansion shocks). In addition, comparisons of numerical tests
with measured data from dam break laboratory experiments show good agreement for Cr50.6. This
reduction in the stability domain is due to the explicit integration of the friction term. Furthermore, BGK
schemes are easily extended to multidimensional problems and do not require characteristic decomposi-
tion. The proposed scheme is second-order in both space and time when the external forces are zero and
second-order in space but first-order in time when the external forces are non-zero. However, since all the
test cases presented are either for zero or small values of external forces, the results tend to maintain
second-order accuracy. In problems where the external forces become significant, it is possible to improve
the order of accuracy of the scheme in time by, for example, applying the Runge–Kutta method in the
integration of the external forces. Copyright © 2001 John Wiley & Sons, Ltd.

KEY WORDS: Boltzmann equation; bore entropy; dam break; numerical model; unsteady open channel
flow

1. INTRODUCTION

Modeling of problems in mechanics, hydrodynamics, hydraulics, and environmental fluid
mechanics may be undertaken at three different length scales, commonly referred to as the
microscopic, mesoscopic, and macroscopic levels [1]. Microscopic modeling involves the
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application of Newton’s laws to every molecule in the system. It requires knowledge of the
initial state of each molecule and the quantification of the interactions among all the molecules
in the system. Because of the level of detail needed, microscopic modeling is computationally
infeasible except in some cases where the mean free path between molecules is large.
Mesoscopic modeling (i.e., modeling from statistical perspectives) entails the application of
Newton’s laws to a probability distribution of molecules. Mesoscopic modeling uses the
Boltzmann equation as a starting point for system simulation, where the dependent variable is
the probability distribution of particles [2]. Mass, momentum, energy, and entropy are
computed from the moments of this distribution function. Macroscopic modeling entails the
application of the basic laws of mechanics and thermodynamics to a continuum. Examples of
the macroscopic continuum models in hydraulic engineering, hydrodynamics, and environment
fluid mechanics include shallow water (i.e., Saint-Venant) equations, water hammer equations,
Richard’s unsaturated flow equation, Navier–Stokes equations, and the equation of chemical
species transport.

Until recently, the analyses and solutions of problems in hydraulics, hydrodynamics, and
environmental fluid mechanics have been based exclusively on macroscopic continuum models,
which are solved either analytically or numerically. However, over the last three decades
numerical schemes based on mesoscopic models have been developed and applied to a
multitude of hydrodynamic problems, including shock waves in compressible flows [2–5],
multicomponent and multiphase flows [6–8], flows in complex geometries [9,10], turbulent
flows [11,12], low Mach number flows [13], and heat transfer and reaction diffusion flows
[14,15]. Two sub-classes of mesoscopic models have emerged: lattice Boltzmann (LB) models
and the continuous Boltzmann Bhatnagar–Gross–Krook (BKG) models. The distribution
function in LB models is discrete in particle velocity [1]. However, the distribution function in
BGK models is continuous in particle velocity [13]. Excellent reviews of the LB models and
BGK models are provided in References [10,15] respectively.

The main advantages of mesoscopic LB or BGK based numerical models over macroscopic
based numerical models are summarized below

1. While the advective operator in the macroscopic approach is non-linear, its counterpart in
the mesoscopic approach is linear [10].

2. A mesoscopic based numerical model can be easily extended to multidimensional flows
because the distribution function of particles is a scalar [5].

3. In mesoscopic modeling, the implementation of complex boundary conditions is straight-
forward [1,2,10,16].

4. In mesoscopic modeling, the incompressible flow solution is obtained in the limit as Mach
number tends to zero. This means that the solution of two- and three-dimensional
non-hydrostatic surface water models do not involve the tedious and difficult solution of
the Poisson equation for the pressure field [13].

5. The scalar nature of the Boltzmann distribution and the fact that the Boltzmann equation
is only a first-order ordinary differential equation (ODE) means that mesoscopic modeling
possesses the intrinsic features required for parallel computation [10,16]. This is highly
beneficial for direct numerical simulation (DNS) and large eddy simulation (LES) of
turbulent open channel flows.
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6. The diffusion and viscous terms that appear as second derivative terms in macroscopic
modeling are represented by a simple algebraic difference term in mesoscopic modeling.
Thus, the need for separate treatment of the advection and diffusion terms is eliminated.

7. The collision function in mesoscopic models eliminates the need for numerical entropy fixes
to ensure that the second law of thermodynamics is not violated by the solution [4]. In
contrast, macroscopic numerical models require ad hoc entropy fixes in order to satisfy the
entropy condition [2,4].

The fact that mesoscopic numerical models satisfy the entropy condition was exploited in
References [4,17] to model shock waves in compressible flows and in References [6–8,18] to
model interfaces in multiphase and multicomponent flows. These applications revealed that the
mesoscopic approach (i) accurately resolves shocks an discontinuities and (ii) does not suffer
from the failures associated with the Riemann solution of macroscopic hydrodynamics
equations. The failures of Riemann solvers are well documented in References [19–21] and will
not be discussed in this paper.

The many attributes of mesoscopic modeling, particularly its success in resolving shocks in
compressible flows and resolving interfacial discontinuities in multiphase flow, suggest that this
method may be useful in simulating open channel flows, where hydraulic jumps may occur. In
the present paper, the collisional BGK model is formulated and applied to one- and
two-dimensional shallow water flows. Numerical experiments show that the BGK based
shallow water model produces highly accurate results for rapidly and gradually varied open
channel flow problems and does not suffer from aphysical oscillations as encountered when
applying Riemann solvers to the macroscopic equations. This finding is consistent with
conclusions reported by researchers using Boltzmann theory to model shock waves in
compressible flows [2,4,5,22,23]. Moreover, mesoscopic based numerical models are simpler to
formulate, apply, and code than Riemann solver models since they do not require characteris-
tic decomposition.

This paper is organized as follows. First, the fundamentals of kinetic theory and the
two-dimensional Boltzmann equation for open channel flow are introduced and discussed.
Second, the relation between the two-dimensional Boltzmann equation and the macroscopic
shallow water equation is established. Third, the numerical solution of the two-dimensional
Boltzmann equation for open channel flow is formulated. Fourth, the Boltzmann-based
numerical model is applied to a range of open channel flow problems and the results are
discussed. Last, the findings of the paper are summarized.

2. THE BOLTZMANN EQUATION FOR TWO-DIMENSIONAL OPEN CHANNEL
FLOWS

The two-dimensional collisional BGK Boltzmann equation can be written as follows
[4,8,24,25]:

(f
(t

+c·9f+
F
m

·
(f
(c

=
h− f

t
(1)
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where f is the irreversible (non-equilibrium) particle distribution; h is the reversible (equi-
librium) distribution of particles; t is time; 9 is the two-dimensional spatial derivative operator
with respect to x and z, the Cartesian co-ordinates; m is the mass of a particle; c is the particle
velocity vector with components cx and cz in the x- and z-directions respectively; F is the net
external force acting on the particles with components Fx and Fz ; and t is the collision (or
relaxation) time, which is a measure of the average time a particle spends between consecutive
collisions. With the channel slopes in the x- and z-directions assumed to be small, the net
external force is [26]

F
m

=g(S0−Sf) (2)

where S0 is the channel slope vector and Sf is the friction slope. Of course, other external forces
such as wind stresses can be added. The details of the collision time t, which depends on the
macroscopic flow variable, will be discussed in the numerical description section. Note that the
right-hand side of Equation (1) is a measure of the deviation of the non-equilibrium from the
equilibrium distribution. According to Equation (1), the collision term (h− f )/t drives the
non-equilibrium distribution f towards equilibrium state h. The flow reaches local equilibrium
when f=h and dh/dt=0 such that the collision term is non-varying and equal to zero [27].

2.1. Basic relationships between macroscopic and mesoscopic properties

The Primary macroscopic quantities that characterize the flow of water in a channel are
r
density, y(x, t)
 fluid depth, v(x, t)
 fluid velocity with components u and 6 in the x- and
z-directions respectively, T(x, t)
stress tensor, and S(x, t)
entropy. The fundamental rela-
tionships among these macroscopic quantities and the mesoscopic properties f and c are as
follows [25]:

y=
&�

−�

&�
−�

f dcx dcz (3)

yv=
&�

−�

&�
−�

cf dcx dcz (4)

y
�

vv−
1
r

T
n

=
&�

−�

&�
−�

ccf dcx dcz (5)

S= −
&�

−�

&�
−�

f ln(Af ) dcx dcz (6)

where A is a normalizing coefficient that will be determined subsequently. The macroscopic
variables in the above equations all depend on (x, t). Also, since integration is performed over
the particle velocities, these equations may be divided by the depth y, which may be moved
into the integrands. Essentially, relationships (3)–(6) form the bridge between the macroscopic
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properties and the mesoscopic properties of a substance and, thereby, link the classical laws of
mechanics with the Boltzmann equation of kinetic theory.

From a statistical mechanics perspective, f/y is the joint probability distribution of the
random particle velocity variable c. The integral of f/y over all particle speeds is equal to 1.
Therefore, v is the mean particle velocity. In addition, the off-diagonal elements of T are the
conditional variances in cx given cz as well as the conditional variance in cz given cx. This is
equivalent to stating that the pressure is unique at a point. Furthermore, the non-equilibrium
part of T (i.e., the shear stress) is the covariance of the distribution f/y. In fact, Vincenti and
Kruger [27] have shown that when a flow reaches local equilibrium (i.e., f=h), the covariance
of h/y and thus the shear stresses are zero. For our system, this implies the following
equilibrium identity:

p
r

I=
&�

−�

&�
−�

(c−v)(c−v)
h
y

dcx dcz (7)

Indeed for our set of equations the viscous terms will be neglected and Equation (7) will be
enforced as well, with h replaced by f.

The fundamental laws of classical physics dictate that mass, momentum, and energy of
particles are collision invariant [25]. As a consequence, the following compatibility conditions
hold:

&�
−�

&�
−�

h− f
t

dcx dcz=0 (8)

&�
−�

&�
−�

c
h− f

t
dcx dcz=0 (9)

&�
−�

&�
−�

cc
h− f

t
dcx dcz=0 (10)

2.2. Deri6ation of the equilibrium distribution function h

Boltzmann (1872) defined a function H= −S and showed that H monotonically decreases
with time, reaching its minimum value at equilibrium (i.e., when f=h). The H theorem may
be stated mathematically as

dH
dt
50 for all f and dH=0 when h= f (11)

where dH indicates a variation in the value of H. Since H= −S, the H theorem in terms of
S is

dS
dt
]0 for all f and dS=0 when h= f (12)
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That is, S monotonically increases with time and attains its maximum value at the equilibrium
state, f=h.

For our problem, the maximization of S must be performed subject to definitions (3)–(5).
These definitions may be applied as constraints on definition (6) using Lagrange multipliers to
obtain

S= −
&�

−�

&�
−�

[ f ln(Af )+l0f+l ·cf+L: (c−v)(c−v)f ] dcx dcz+l0y+l ·vy

+L: I
py
r

(13)

where l0, l, and L are the Lagrange multipliers that will be determined by analyzing a
variation of Equation (13) around the equilibrium state. Note immediately that because the off
diagonal elements of L cannot contribute to the entropy generation, they must be zero such
that L is a diagonal tensor. Before applying the H theorem to the open channel flow problem,
assume that the pressure distribution is hydrostatic such that the average pressure is given by
p=rgy/2, where g is the gravitational acceleration. Then take the variation of S as given by
Equation (13) with respect to f, y, u, and 6 for fixed t, x, and c while holding the Lagrange
multipliers constant. This gives

dS= −
&�

−�

&�
−�

df [ln(Af )+1+l0+l ·c+L: (c−v)(c−v)] dcx dcz

+dy [l0+l ·v+L: Igy ]+dv·ly (14)

The H theorem, as given by Equation (12), indicates that at equilibrium the entropy will be a
maximum such that a variation of entropy at the equilibrium state will provide dS=0. For
this condition to hold, the coefficients of each of the independent variations in Equation (14)
must be zero. With f=h at equilibrium, the conditions for equilibrium are

ln(Ah)+1+l0+l ·c+L: (c−v)(c−v)=0 (15)

l0+l ·v+L: Igy=0 (16)

ly=0 (17)

Solution of Equation (15) for h subject to the restriction enforced by Equation (17) that l=0
and the condition that the off-diagonal elements of L are 0 gives

h=
1
A

exp[−1−l0] exp[−L: (c−v)(c−v)] (18)

which is a two-dimensional Gaussian distribution.
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Inserting the form of h given by Equation (18) into the right-hand side of definitions (3)–(5)
at equilibrium and carrying out the integration produces a system of five equations for
Lagrange multipliers

y=
1
A

e−1−l0
p

(L11L22)1/2 exp(L: vv) (19)

yv=v
1
A

e−1−l0
p

(L11L22)1/2 exp(L: vv) (20)

y
�

vv+
gy
2

I
�

=
�

vv+
1
2

L−1� 1
A

e−1−l0
p

(L11L22)1/2 exp(L: vv) (21)

These equations are consistent with Equations (16) and (17) and may be solved algebraically
for Lagrange multipliers. For example, division of Equation (21) by y as defined by Equation
(19) readily shows that

L11=L22=
1
gy

(22)

Insertion of these coefficients into Equation (19) gives

1
A

exp(−1−l0)=
1

pg
exp

�
−

v·v
gy
n

(23)

Equation (16) may be employed with this expression to obtain separate expressions for A and
l0 as

A=epg (24)

l0= −2+
v·v
gy

(25)

Finally, the values for A and the Lagrange multipliers may be substituted into Equation (18)
to provide the equilibrium distribution function

h(x, c, t)
1

pg
exp

�
−

(c−v) ·(c−v)
gy

n
(26)

2.3. Proof of the positi6ity of entropy production in the Boltzmann model

To obtain the entropy balance equation: (i) Equation (1) (no external forces) is multiplied by
− ln(Af ); (ii) the result is integrated with respect to the particle velocities in the x- and
z-directions, i.e., cx and cz ; and (iii) the statement of the second law of thermodynamics is
invoked. The resulting expression is as follows:
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(S
(t

+9 ·(vS)−9·
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(c−v)f ln(Af ) dcx dcz= −
&�

−�

&�
−�

h− f
t

ln(Af ) dcx dcz

(27)

In Equation (27), the first term is the local rate of change of entropy, the second term is the
entropy transport due to mean advection, and third term is the entropy dispersive flux term
due to particles moving at velocities different form the mean flow velocity. The right-hand side
of Equation (27) is the rate of entropy production, which must be non-negative for the
Boltzmann model to satisfy the second law of thermodynamics. Denote this production term
as s such that

s= −
1
t

&�
−�

&�
−�

(h− f ) ln(Af ) dcx dcz (28)

Combination of the equilibrium distribution function (26) with the compatibility conditions
(8)–(10) allows the integral of (h− f ) ln(Ah) to be shown to be zero as follows:

&�
−�

&�
−�

(h− f ) ln(Ah) dcx dcz

=
&�

−�

&�
−�

(h− f ) dcx dcz−
1

gy
&�

−�

&�
−�

(c−v) ·(c−v)(h− f ) dcx dcz=0 (29)

Thus, addition of Equation (29) to Equation (28) produces

s=
1
t

&�
−�

&�
−�

(h− f ) ln
h
f

dcx dcz (30)

Now, based on Equation (30), the following conclusions about s are obtained:

when hB f, then h− fB0 and ln
h
f
B0 such that s\0

when hB f, then h− f\0 and ln
h
f
\0 such that s\0

when h= f, then h− f=0 and ln
h
f
=0 such that s=0

That is

s]0 for all f and s=0 only if h= f (31)
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The positivity of the entropy production ensures that solutions based on the collisional
Boltzmann equations are physical.

In a classic paper, Lax wrote [28]

The role of the entropy condition is to distinguish those discontinuous solutions which are
physically realizable from those which are not.

For example, the positivity of entropy production ensures that a hydraulic jump involves flow
transition from supercritical to subcritical and never a transition from subcritical to supercrit-
ical conditions. Note that the equations of mass and momentum across a jump may be
satisfied for either type of transition, but the only physically attainable solution is the one
where entropy production is positive (i.e., s\0) corresponding to a transition from supercrit-
ical to subcritical. In fact, models based on conservation of mass and momentum only (e.g.,
Euler equations and the shallow water equations) may admit solutions that violate the entropy
principle [28]. It is for this reason that physical application of these models always requires a
numerical entropy fix.

Before we proceed to the formulation of the Boltzmann based numerical model for open
channel flows, it is essential to ensure that the solution vector (y, v) obtained from the
Boltzmann equation is consistent with the macroscopic equations, namely the conservation
laws of mass and momentum (i.e., the shallow water equation). The following section is
devoted to this task.

2.4. Consistency for the Boltzmann model with mass and momentum balance

The Boltzmann based mass, x momentum, and z momentum equations are obtained by the
following steps: (i) multiply Equation (1) by 1, cx, and cz respectively; (ii) integrate each of
these three equations over cx and cz space; (iii) invoke definitions (3), (4), (8), and (9); and (iv)
use the fact that f and fc have compact supports. The details of this derivation are given in
Appendix C. The resulting mass and momentum equations are

(y
(t

+9 ·(vy)=0 (32)

(vy
(t

+9 ·
�

vvy+
gy2

2
I
�

+gy(Sf−S0)

=t
!
9 ·
�gy2

2
9v
�

+9
�

v·9
�gy2

2
�n

−9 ·
�

v9
�gy2

2
�n"

I

(33)

The Boltzmann based mass conservation equation (32) is identical to its shallow water
counterpart, while the Boltzmann based momentum equation (33) differs from the shallow
water equation by the presence of the non-zero terms on the right-hand side. As t�0, the
Boltzmann based momentum equation collapses to the shallow water set. Let (yt, vt) be the
solution of Equations (32) and (33); and let (y, v) be the solution of the shallow water
equations. These solution sets are related according to
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(y, v)= lim
t�0

(yt, vt) (34)

A solution obtained in the limit of Equation (34) is unique and physically realizable in that
it meets the entropy condition [28–30]. Therefore, a simulation algorithm developed for the
Boltzmann based mass and momentum equations (32) and (33) does not require additional
numerical entropy fixes.

According to Equation (34), the solution of the shallow water equations is the limit of the
Boltzmann solution when t�0. If a numerical solution is generated using a time step Dt, the
smallest resolvable time scale of the solution is of O(Dt) [4]. Therefore, the numerical solution
(y, v) becomes

(y, v)= lim
t�O(Dt)

(yt, vt) (35)

An explicit form for t in this limit is developed later in the paper.

3. NUMERICAL SOLUTION OF THE TWO-DIMENSIONAL BOLTZMANN BASED
MODEL FOR OPEN CHANNEL FLOWS

Figure 1 depicts a typical spatial gird at time level n. Cell (i, j ) is the dashed rectangle, whose
center is node (i, j ). The interface between cell (i, j ) and cell (i+1, j ) is located at x=xi+1/2.
Similarly, the interface between cell (i, j ) and cell (i, j+1) is located at z=zj+1/2.

Figure 1. A typical spacial grid.
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The formulation of the Boltzmann numerical scheme for shallow water equations consists of
the following three main steps:

1. A data reconstruction technique, where interpolation is used to determine the functions
yn(x) and vn(x) from the known nodal values yi, j

n and vi, j
n . The functions yn(x) and vn(x) are

the initial conditions for the calculation of the solution at time n+1.
2. Formulation of a discrete Boltzmann equation.
3. Formulation of the discrete system equation for the unknown values yi, j

n+1 and vi, j
n+1 from

the discrete Boltzmann equation. It must be emphasized that the discrete Boltzmann is not
coded but only used as an intermediate step in the formulation of the discrete shallow
water equations. In essence, the Boltzmann equation provides an alternate formulation
approach to the classical approaches based on finite elements, finite difference, Riemann
solvers, and the method of characteristics.

3.1. Data reconstruction

Approximations for yn(x) and (yv)n(x) can be constructed form nodal values of the first
derivatives of these functions using Taylor series expansions in space. These functions provide
the initial conditions at time level n for marching to level n+1. Second-order Taylor series
expansions for yn(x) and (yv)n(x) in cell (i, j ), around node (i, j ), are obtained as

� y
vy
�n

=
� y

vy
�

i, j

n

+ (x−xi, j) ·9
� y

vy
�

i, j

n

(36)

where x, z� [xi−1/2, xi+1/2]× [zj−1/2, zj+1/2] and approximations to the first derivatives are
employed. If first-order approximation of these derivatives are used the numerical solution is
poor. Excessive smearing is obtained in the vicinity of large gradients, and the first-order
character of the overall solution provides inadequate accuracy in the smooth region [30]. On
the other hand, second-order approximation of the derivatives can result in unphysical
oscillations near large gradients [30,31]. Two numerical approaches are commonly employed
for dealing with these oscillations: artificial dissipation and slope limiters.

The primary goal of artificial dissipation is to suppress numerical oscillations that develop
in the course of the generation of the solutions [31]. The drawback of artificial dissipation is
best summarized by LeVeque [30, p. 175]

The difficulty with the artificial viscosity approach is that it is hard to determine an appropriate
form for [artificial viscosity] that introduces just enough dissipation to preserve the monotonicity
without causing unnecessary smearing.

Even if an appropriate form of artificial viscosity is found, the magnitude of artificial
dissipation coefficient has to be adjusted empirically [31].

While artificial dissipation is designed to suppress oscillations that develop in a solution,
slope limiters prevent oscillations from developing [31]. In addition, slope limiters are free of
empirical coefficients [30]. In this paper, the x and z derivatives in Equation (36) are
determined using the monotonic upstream centered scheme for conservation laws (MUCSCL)
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[32]. This limiter examines alternative approximations to the derivative terms and selects the
form that will be free of oscillations. Use of this limiter to approximate the derivatives is as
follows:

(

(x
� y

yv
�

i, j

n

=
1

Dx

Á
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ä

sgn(Dxyi, j
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n �)
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n )
2
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and

(

(z

Á
Ã
Ã
Ã
Ä

y
yu
y6

Â
Ã
Ã
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where the difference operators are defined as

Dx( . )i, j
n = ( . )i+1, j

n − ( . )i, j
n (39)

Dz( . )i, j
n = ( . )i, j+1

n − ( . )i, j
n (40)

9x( . )i, j
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n − ( . )i−1, j
n (41)

9z( . )i, j
n = ( . )i, j

n − ( . )i, j−1
n (42)

dx( . )i, j
n =

1
2

[Dx( . )i, j
n +9x( . )i, j

n ] (43)

dz( . )i, j
n =

1
2

[Dz( . )i, j
n +9z( . )i, j

n ] (44)

It is worth emphasizing that limiters are designed to suppress oscillations whose origins are
not in the physics of the problem under consideration but are in a numerical approximation.
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These limiters do not enforce a physical requirement that an entropy condition be satisfied.
For example, in studying Burger’s equation for an initial square wave, Hirsch [31] found that
the MacCormack scheme with the van Leer limiter prevents the occurrence of oscillations but
admits entropy violating solutions. The present scheme relies on the van Leer limiter simply to
prevent the occurrence of unphysical numerical oscillations in the y, yu and y6 solutions. It is
the collision term in the Boltzmann equation that ensures that the entropy condition is met (see
Equation (31)).

At this stage, the functions yn(x) and (yv)n(x) in each cell (i, j ) are completely specified.
Thus, the first derivatives of these functions may be calculated in each cell and evaluated at the
cell boundaries. These quantities are needed during the formulation of the discrete Boltzmann
equation. It is very important to note that because each function is defined locally within a cell,
neither its value nor its derivatives are necessarily continuous at the interfaces between cells.
For examples, (y, yv)i+1/2− , j

n is, generally, different from (y, yv)i+1/2+ , j
n , where the subscript

i+1/2+ is used to denote that x�xi+1/2 with x\xi+1/2 and the subscript i+1/2− is used to
denote that x�xi+1/2 with xBxi+1/2. Therefore, some procedure must be implemented to
determine unique interface values, designated using overbars as, for example, (ȳ, yv)i+1/2, j

n

from the known quantities (y, yv)i+1/2− , j
n and (y, yv)i+1/2+ , j

n . The approach will be illustrated
here for the (i+1/2, j ) interface with extension to other interfaces being completely analogous.
In the remainder of this paper, overbars are used to denote functions that are uniquely defined
at interfaces. However, the derivatives of these functions in the direction normal to an interface
are not necessarily continuous.

Equations (3) and (4) are employed to obtain the function values at the interface as follows:

ȳ i+1/2, j
n =

&�
−�

&�
−�

f i+1/2, j
n dcx dcz (45)

(yv)i+1/2, j
n =

&�
−�

&�
−�

cf i+1/2, j
n dcx dcz (46)

While f i+1/2, j
n and f i, j+1/2

n can experience a jump across cell interfaces, the flow within each cell
is assumed to be in local equilibrium. Therefore

f i+1/2
n =

!hi+1/2− , j
n if x=xi+1/2−

hi+1/2+ , j
n if x=xi+1/2+

(47)

Insertion of Equation (47) into Equations (45) and (46) and realizing that only those particles
with (a) positive x-speed (i.e., cx]0) will travel from xi+1/2− towards xi+1/2, and (b) negative
x-speed (i.e., cxB0) will travel from xi+1/2+ towards xi+1/2, gives

ȳ i+1/2, j
n =

&�
−�

& 0

−�

hi+1/2+ , j
n dcx dcz+

&�
−�

&�
0

hi+1/2− , j
n dcx dcz (48)
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(yv)i+1/2, j
n =

&�
−�

& 0

−�

chi+1/2+ , j
n dcx dcz+

&�
−�

& 0

−�

chi+1/2− , j
n dcx dcz (49)

Evaluation of the integrals gives (see Appendix B)

ȳ i+1/2, j
n =

�y
2

erfc
� u


gy

�n
i+1/2+ , j

n

+
�y

2
erfc

�
−

u


gy

�n
i+1/2− , j

n

(50)

(yu)i+1/2, j
n =

�yu
2

erfc
� u


gy

�
−

y
gy
2

e−u2/gyn
i+1/2+ , j

n

+
�yu

2
erfc

�
−

u


gy

�
+

y
gy
2

e−u2/gyn
i+1/2− , j

n

(51)

(y6)i+1/2, j
n =

�y6
2

erfc
� u


gy

�n
i+1/2+ , j

n

+
�y6

2
erfc

�
−

u


gy

�n
i+1/2− , j

n

(52)

The analogous integrals for quantities evaluated at an (i, j+1/2) interface are

ȳ i, j+1/2
n =

�y
2

erfc
� 6


gy

�n
i, j+1/2+

n

+
�y

2
erfc

�
−
6


gy

�n
i, j+1/2−

n

(53)

(yu)i, j+1/2
n =

�yu
2

erfc
� 6


gy

�n
i, j+1/2+

n

+
�yu

2
erfc

�
−
6


gy

�n
i, j+1/2−

n

(54)

(y6)i, j+1/2
n =

�y6
2

erfc
� 6


gy

�
−

y
gy
2

e−62/gyn
i, j+1/2+

n

+
�y6

2
erfc

�
−
6


gy

�
+

y
gy
2

e−62/gyn
i, j+1/2−

n

(55)

where erfc is the complementary error function, where erfc(z)=2/
p 	z
� e−r2

dr [33, p. 297].
With this information, unique interface values for (y, yv) have been obtained. The deriva-

tives associated with the interface values are then defined as

(

(x

Á
Ã
Ã
Ã
Ä

ȳ

yv

Â
Ã
Ã
Ã
Åi+1/2− , j

n

=
2

Dx
� ȳ i+1/2, j

n −yi, j
n

(yv)i+1/2, j
n − (y6)i, j

n

�
(56)

(

(x

Á
Ã
Ã
Ã
Ä

ȳ

yv

Â
Ã
Ã
Ã
Åi+1/2+ , j

n

=
2

Dx
� yi+1, j

n − ȳ i+1/2, j
n

(y6)i+1, j
n − (yv)i+1/2, j

n

�
(57)
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(

(z

Á
Ã
Ã
Ã
Ä

ȳ

yv

Â
Ã
Ã
Ã
Åi, j+1/2−

n

=
2
Dz

� ȳ i, j+1/2
n −yi, j

n

(yv)i, j+1/2
n − (yv)i, j

n

�
(58)

(

(z

Á
Ã
Ã
Ã
Ä

ȳ

yv

Â
Ã
Ã
Ã
Åi, j+1/2+

n

=
2
Dz

� yi, j+1
n − ȳ i, j+1/2

n

(yv)i, j+1
n − (yv)i, j+1/2

n

�
(59)

These derivatives are required in the next section.
The unique equilibrium distribution function is designed as h( . The analytical expression

for h( at an interface can be obtained by replacing (y, yv) in Equation (26) with (ȳ, yv). For
example, h( at cell interface (i+1/2, j ) is as follows:

h( i+1/2, j
n =

1
pg

!
exp

�
−

(c− v̄) ·(c− v̄)
gȳ

n"
i+1/2, j

n

(60)

In addition to (ȳ, yv) and h( being uniquely specified at cell interfaces, the z and t deriva-
tives of h( are continuous (i.e., uniquely determined) at cell interfaces (i+1/2, j ) while the x
and t derivatives of h( are unique at the cell interfaces (i, j+1/2). Therefore

�
h( , (h

(
(z

,
(h(
(t
�

i+1/2+ , j

n

=
�

h( , (h
(
(z

,
(h(
(t
�

i+1/2− , j

n

(61)

�
h( , (h

(
(x

,
(h(
(t
�

i, j+1/2+

n

=
�

h( , (h
(
(x

,
(h(
(t
�

i, j+1/2−

n

(62)

However, the x derivatives of h( at cell interfaces xi+1/2 as given by Equations (56) and (57)
may have different values; and the z derivatives of h( at interfaces zj+1/2 given by Equations
(58) and (59) are also not necessarily equal. These remarks are utilized in the next section,
where a discrete model for the Boltzmann equation is formulated.

3.2. Formulation of a discrete model for the Boltzmann equation

Flow discontinuities, such as hydraulic jumps, are non-equilibrium flows. However, near
equilibrium, quantities such as h, y, and v are continuous. Since overbars are used to
designate continuous functions, the equilibrium distribution h that appears in the collision
term in the Boltzmann equation is replaced by h( . In addition, for convenience, in the
remainder of this paper c is dropped from the explicit list of arguments of f, h, and h( . For
example, f(x, c, t) will be simply written as f(x, t). However, it is understood that f, h, and
h( do depend on c.
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3.2.1. Solution for f at xi+1/2, j. Using operator splitting [30,31,34], Equation (1) can be
re-written as follows:

(f*
(t

+ (S0−Sf) ·
(f*
(c

=0 where f*(x, c, t=nDt)= f(x, c, t) (63)

(f**
(t

+c·9f**=
h( − f**

t
where f**(x, c, t=nDt)= f*(x, c, t) (64)

Note that the uniquely defined local equilibrium distribution h( is used in the collision term.
If the external forces are zero (i.e., S0−Sf=0), the solution operator of problem (63) is the

identity operator making the solution operator of problem (64) identical to that of the solution
operator of the Boltzmann equation. That is, the above operator splitting is exact in the case
of zero external forces. However, if S0−Sf is different from zero, the product of the solution
operators of problems (63) and (64) differs from the solution operator of the full Boltzmann
equation. As result, the formal accuracy of the solution based on the operator splitting is
reduced. The reduction in the formal accuracy depends on the relative magnitude of the
external forces and the other terms in the momentum equation. In this paper, the main
objective is to test the capability of the Boltzmann scheme in modeling complex flow features,
such as discontinuous solutions, extreme expansion waves, and the interactions of discontinu-
ous and expansion waves. Near these complex flow features, S0−Sf is either small or zero. In
fact, as the example section shows, the splitting approximation yields accurate results for the
problems considered. This implies that, for problems in open channels where flow variations
are rapid, the reduction in the order of accuracy of the solution due to the splitting
approximation is insignificant. However, it is expected that this conclusion may not be true for
gradually varying open channel flow problems.

3.2.2. Solution for f** at xi+1/2, j. The problem given by Equation (64) has the following
characteristic equation form:

df**
dt

=
h( − f**

t
if

dx
dt

=c (65)

For convenience, the superscript ** will be dropped. That is, in the remainder of this paper,
f ** is simply denoted by f. The analytical solution for f at an interface between cells located
at xi, j and xi+1, j, f(xi+1/2, j, t), is obtained from the operator that does not explicitly involve
the external forces (i.e., Equation (65)) as follows:

f(xi+1/2, j, t)= f(Xi+1/2, j, tn)

I

e− (t− tn)/t+
1
t

& t

t n

h( (x(b), b) e− (t−b)/t db

II

(66)

where

Xi1/2, j=xi+1/2, j−c(t− tn) (67)
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where b is a dummy variable. Physically, the quantity Xi+1/2, j is the co-ordinate at time tn of
a particle whose velocity is c, which arrives at the cell interface (xi+1/2, j) at time t. Equation
(67) defines particle paths during the time interval (tn, t) for the case of no external forces.
From Equation (67), the following relations hold:

Xi+1/2\xi+1/2 if cxB0, Xi+1/25xi+1/2 if cx]0 (68)

Zj\zj if czB0, Zj5zj if cz]0 (69)

The explicit evaluation of f(xi+1/2, j, t) requires expressions for (a) particle locations at time
tn, namely Xi+1/2, j (already given by Equation (67)), (b) collision time t ; and (c) terms I and
II in Equation (66). Expression for t and terms I and II are developed below.

3.2.3. Collision time. Appendix C shows that the viscous terms for a Newtonian fluid are
obtained by setting t=n/gy, where n is the kinematic viscosity of the fluid (water in this case).
However, for the numerical calculations, an expression for t similar to that derived by Xu et
al. [5] for the computation of shocks in compressible flows is adopted in this paper. Its form
at cell interface i+1/2 is as follows:

t i+1/2
n =C1

n

g [y ]i+1/2, j
n +C2

�[y2]i+1/2+ , j
n − [y2]i+1/2− , j

n �
[y2]i+1/2+ , j

n + [y2]i+1/2− , j
n Dt for z� [zj−1/2, zj+1/2] (70)

where C1 and C2 are constants to be determined from numerical experimentation. The collision
time in Equation (70) takes on a different value at each cell interface depending on the flow
situation in the two adjacent cells.

Xu et al. [5] found that C1 and C2 values of order 0.01 and 1 respectively were suitable for
shock calculations in gas dynamics and that their results were not very sensitive to either
coefficient. The computational experiments (given later in the paper) confirm that C2 of order
1 is also appropriate for open channel flow calculations. Note that the t formula (i.e.,
Equation (70)) consists of two parts: a physical part accounted for in the first term and a
numerical part accounted for by the second term. Because the viscous terms are ignored in
shallow water calculations, the natural choice is to set C1=0. However, in implementation, C1

is set to be of order 0.001 to ensure that the collision time, as represented by t, is never zero
thereby avoiding a singularity. To explain, the Boltzmann equation has a singularity at t=0.
In flow regions where the water depth is constant, the second term in the right-hand side of
Equation (70) is zero. In this instance, if C1 was zero, the singular condition would result. The
numerical part of t ensures that model does not violate the entropy condition.

3.2.4. Approximate expression for f(Xi+1/2, j, tn). As noted previously, flow properties (i.e., y
and yv) can experience large variations at a cell interface due, for example, to the presence of
a jump or a bore. That is, generally, y and yv are discontinuous at cell interfaces. As a result,
f usually experiences a jump across a cell interface, for example, at xi+1/2. While f(xi+1/2, j, tn)
may be discontinuous, the flow within each cell is considered to be in local equilibrium.
Second-order Taylor series expansions for f around the co-ordinates xi+1/2− , j and xi+1/2+ , j at
tn are developed as follows:
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f(x, tn)=
!hi+1/2− , j

n +9hi+1/2− , j
n ·(x−xi+1/2, j) if x5xi+1/2

hi+1/2+ , j
n +9hi+1/2+ , j

n ·(x−xi+1/2, j) if x\xi+1/2

(71)

where x� [−�, +�]. The derivatives in Equation (71) are readily evaluated from the
analytical expression for h (i.e., the Gaussian distribution). For example

9hi+1/2− , j
n =

!
−9

�(c−v) ·(c−v)
gy

n
h
"

i+1/2− , j

n

(72)

or

9hi+1/2− , j
n =

!�
−9

�v·v
gy

�
+9

�2v
gy
�

·c−9
� 1

gy
�

c·c
n

h
"

i+1/2− , j

n

(73)

Similarly

9hi+1/2+ , j
n =

!�
−9

�v·v
gy

�
+9

�2v
gy
�

·c−9
� 1

gy
�

c·c
n

h
"

i+1/2+ , j

n

(74)

Using vector notation, one may write the above derivatives as follows:

9hi+1/2− , j
n =9Fhi+1/2− , j

n ·M (75)

9hi+1/2− , j
n =9Fhi+1/2− , j

n ·M (76)

where

M= (1, cx, cz, c·c)T

F=
�

−
v·v
gy

,
2u
gy

,
26
gy

, −
1

gy
�

and the superscript T indicates the transpose. The gradient of F has already been determined
in the reconstruction stage (see Equations (37) and (38)). The approximate form for f(x, tn)
becomes as follows:

f(x, tn)=
!hi+1/2− , j

n [1+ (x−xi+1/2, j) ·9Fi+1/2− , j
n ·M] if x5xi+1/2

hi+1/2+ , j
n [1+ (x−xi+1/2, j) ·9Fi+1/2+ , j

n ·M] if x\xi+1/2

(77)

Expression (77) is valid for all x. At x=Xi+1/2 Equation (77) becomes
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f(Xi+1/2, j, tn)

=
!hi+1/2− , j

n [1+ (Xi+1/2, j−xi+1/2, j) ·9Fi+1/2− , j
n ·M] if Xi+1/25xi+1/2 (i.e., cx]0)

hi+1/2+ , j
n [1+ (Xi+1/2, j−xi+1/2, j) ·9Fi+1/2+ , j

n ·M] if Xi+1/2\xi+1/2 (i.e., cxB0)

(78)

or

f(Xi+1/2, j, Zj, tn)=H(cx)hi+1/2− , j
n {1+ (Xi+1/2, j−xi+1/2, j) ·9Fi+1/2− , j

n ·M}

+ [1−H(cx)]hi+1/2+ , j
n {1+ (Xi+1/2, j−xi+1/2, j) ·9Fi+1/2+ , j

n ·M} (79)

where H is the Heaviside function (i.e., H(cx)=0 if cxB0 and H(cx)=1 if cx]0). Substitu-
tion of Equation (67) into this expression gives

f(Xi+1/2, j, tn)=H(cx)hi+1/2− , j
n {1+ (t− tn)c·9Fi+1/2− , j

n ·M}

+ [1−H(cx)]hi+1/2+ , j
n {1+ (t− tn)c·9Fi+1/2+ , j

n ·M} (80)

which completes the approximation of term I in Equation (66).

3.2.5. Approximate expression for h( (x, b). To evaluate the second term in Equation (66), an
approximate expression for the unique equilibrium distribution h( (x, b) is required. Initially, a
general approximation for h( is obtained for all x and b. Hence, the value of h( along the path
defined by Equation (67) is a special case of the general formula. A second-order Taylor series
expansion for h( (x, b) around the point (xi+1/2, j, tn) can be obtained as follows:

h( (x, b)=

Á
Ã
Í
Ã
Ä

h( i+1/2, j
n +

(h(
(x

)
(i+1/2)− , j

n

(x−xi+1/2)+
(h(
(z

)
i+1/2, j

n

(z−zj)+
(h(
(b

)
i+1/2, j

n

(b− tn) if x5xi+1/2 (i.e., cx]0)

h( i+1/2, j
n +

(h(
(x

)
(i+1/2)+ , j

n

(x−xi+1/2)+
(h(
(z

)
i+1/2, j

n

(z−zj)+
(h(
(b

)
i+1/2, j

n

(b− tn) if x\xi+1/2 (i.e., cxB0)

(81)

The fact that h( and its z and b derivatives are unique at cell interfaces, (i+1/2, j ) has been
used in the formulation of Equation (81).

The derivatives of the Gaussian distribution h( in Equation (81) are obtained in an analogous
manner to those given by Equations (73) and (74). Here the components of the gradient are
written because the derivative with respect to z is continuous at the interface under consider-
ation while the derivative with respect to x is not. The result is
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�(h(
(x

n
i+1/2− , j

n

=

><
−
(
�v̄ · v̄

gȳ
�

(x
+
(
�2v̄

gȳ
�

(x
·c−

(
� 1

gȳ
�

(x
c·c

=
h(

?
i+1/2− , j

n

(82)

�(h(
(x

n
i+1/2+ , j

n

=

><
−
(
�v̄ · v̄

gȳ
�

(x
+
(
�2v̄

gȳ
�

(x
·c−

(
� 1

gȳ
�

(x
c·c

=
h(

?
i+1/2+ , j

n

(83)

�(h(
(z
n

i+1/2, j

n

=

><
−
(
�v̄ · v̄

gȳ
�

(z
+
(
�2v̄

gȳ
�

(z
·c−

(
� 1

gȳ
�

(z
c·c

=
h(

?
i+1/2, j

n

(84)

�(h(
(b

n
i+1/2, j

n

=

><
−
(
�v̄ · v̄

gȳ
�

(b
+
(
�2v̄

gȳ
�

(b
·c−

(
� 1

gȳ
�

(b
c·c

=
h(

?
i+1/2, j

n

(85)

Because h( is continuous, h( i+1/2+ , j
n =h( i+1/2− , j

n =h( i+1/2, j
n . Using this fact and the notation

introduced previously, one can write the preceding derivatives as

�(h(
(x

n
i+1/2− , j

n

=h( i+1/2, j
n �(F(

(x
n

i+1/2− , j

n

·M (86)

�(h(
(x

n
i+1/2+ , j

n

=h( i+1/2, j
n �(F(

(x
n

i+1/2+ , j

n

·M (87)

�(h(
(z
n

i+1/2, j

n

=h( i+1/2, j
n �(F(

(z
n

i+1/2, j

n

·M (88)

�(h(
(b

n
i+1/2, j

n

=h( i+1/2, j
n �(F(

(b

n
i+1/2, j

n

·M (89)

where

F( =�
−

v̄ · v̄
gȳ

,
2ū
gȳ

,
26̄
gȳ

, −
1

gȳ
�

Insertion of Equation (86)–(89) into Equation (81) yields the following approximate solution
expression for h( (x, b):

h( (x, b)=h( i+1/2, j
n !

1+
�(F(
(b

�
i+1/2, j

n

·M(b− tn)+
�(F
(z

�
i+1/2, j

n

·M(z−zj)

+
�

H(cx)
�(F(
(x

�
i+1/2− , j

n

+ [1+H(cx)]
�(F(
(x

�
i+1/2+ , j

n n
·M(x−xi+1/2)

"
(90)
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The derivatives of F( with respect to x have already been determined in the reconstruction
stage (see Equations (56) and (57)). However, the derivatives of F( with respect to z and b at
node (i+1/2, j, n) are unknown. First, we evaluate the derivative (F( /(z.

The compatibility equations (8)–(10) at b= tn can be re-written as follows:

&�
−�

&�
−�

h( (x, tn)− f(x, tn)
tn M dcx dcz=0 Öx (91)

Since Equation (91) is true for all z, the following holds:

(

(z
&�

−�

&�
−�

h( (x, tn)− f(x, tn)
tn M dcx dcz=0 Öx (92)

This equation may be written in a form particularly appropriate for x=xi+1/2 as

(

(z
&�

−�

&�
0

h( (xi+1/2, z, tn)− f(xi+1/2−, z, tn)
t i+1/2

n M dcx dcz

+
(

(z
&�

−�

& 0

−�

h( (xi+1/2, z, tn)− f(xi+1/2+, z, tn)
t i+1/2

n M dcx dcz=0 Öz (93)

The quantities appearing in the integrand may be obtained from Equations (77) and (90) at
tn and xi+1/2

h( (xi+1/2, z, tn)=h( i+1/2, j
n �

1+ (z−zj)
�(F(
(z

�
i+1/2, j

n

·M
n

(94)

f(xi+1/2, z, tn)=hi+1/2− , j
n �

1+ (z−zj)
�(F
(z

�
i+1/2− , j

n

·M
n

H(cx)

+hi+1/2+ , j
n �

1+ (z−zj)
�(F
(z

�
i+1/2+ , j

n

·M
n

[1−H(cx)] (95)

Substitution of these last two equations into Equation (93) while noting that t i+1/2
n is piecewise

constant in z (see Equation (70)) gives

�(F(
(z

�
i+1/2, j

n

·
&�

−�

&�
−�

h( i+1/2, j
n MM dcx dcz

=
�(F
(z

�
i+1/2− , j

n

·
&�

−�

&�
0

hi+1/2− , j
n MM dcx dcz

+
�(F
(z

�
i+1/2+ , j

n

·
&�

−�

& 0

−�

hi+1/2+ , j
n MM dcx dcz (96)
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The integrals appearing in this equation are evaluated in Appendix B as the matrices
[G( ]i+1/2j

n , [Gcx

+]i+1/2− , j
n , and [Gcx

−]i+1/2+ , j
n so that the equation becomes

�(F(
(z

·G( n
i+1/2, j

n

=
�(F
(z

·Gcx

+n
i+1/2− , j

n

+
�(F
(z

·Gcx

−n
i+1/2+ , j

n

(97)

where the derivatives

�(F
(z
n

i+1/2− , j

n

and
�(F
(z
n

i+1/2+ , j

n

have previously been obtained in the data reconstruction stage. Therefore, Equation (97) may
be used to determine the value of the vector of derivatives (F( /(z. Hence, (F( /(b is the only
remaining unknown derivative. It may be obtained after first completing the solution of the
discretized Equation (66). The approximate solution for h given as h( in Equation (90) is valid
for all x and t. Invoking Equation (67) one can write expression (90) along a particle path as
follows:

h( (x(b), b)=

h( i+1/2, j
n !

1+
�(F(
(b

�
i+1/2, j

n

·M(b− tn)+
�(F(
(z

�
i+1/2, j

n

·Mcz(b− t)

+
�

H(cx)
�(F(
(x

�
i+1/2− , j

n

+ [1−H(cx)]
�(F(
(x

�
i+1/2+ , j

n n
·Mcx(b− t)

"
(98)

At this stage, term II in Equation (66) can be integrated with respect to b as follows:

1
t

& t

t n

h( (x(b), b) e− (t−b)/t db=h( i+1/2, j
n �1

t

& t

t n

e− (t−b)/t db
n

+h( i+1/2, j
n �(F(

(b

n
i+1/2, j

n

·M
�1

t

& t

t n

(b− tn) e− (t−b)/t db
n

−h( i+1/2, j
n cz

�(F(
(z
n

i+1/2, j

n

·M
�1

t

& t

t n

(t−b) e− (t−b)/t db
n

−h( i+1/2, j
n !

cxH(cx)
�(F(
(x
n

i+1/2− , j

n

+cx [1−H(cx)]
�(F(
(x
n

i+1/2+ , j

n "
·M

�1
t

& t

t n

(t−b) e− (t−b)/t db
n

(99)

which gives the following expression:
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1
t

& t

t n

h( (x(b), b) e− (t−b)/t db=h( i+1/2, j
n !

1−exp
�

−
t− tn

t

n"
+h( i+1/2, j

n �(F(
(b

n
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·M
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−
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n
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i+1/2− , j

n
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!
(t− tn) exp

�
−

t− tn

t

n
+t

�
−1+exp

�
−

t− tn

t

�n"
(100)

This completes the approximation of term II in Equation (66). Insertion of Equations (80) and
(100) into Equation (66) yields the following:

f(xi+1/2, zj, t)−h( i+1/2, j
n −h( i+1/2, j

n �(F(
(b

n
i+1/2, j

n

·M(t− tn)

=e− (t− tn)/t !H(cx)hi+1/2− , j
n + [1−H(cx)]hi+1/2+ , j

n −h( i+1/2, j
n
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n

+ [1−H(cx)]
�

h
�
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(F

(x
+cz

(F

(z
�n

i+1/2+ , j
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n �(F(
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−
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cz
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n

i+1/2, j

n

+cxH(cx)
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+cx [1−H(cx)]
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·M

!
(t− tn) exp

�
−

t− tn

t

�
+t

�
−1+exp

�
−

t− tn

t

�n"
(101)

This is the discrete Boltzmann equation. At this stage, the only remaining unknown is the time
derivatives (F( /(b at (i+1/2, j, n). This time derivative is evaluated below.

Using the results in Appendix B, the zero moment of the difference equation (101) gives

&�
−�

&�
−�

f(xi+1/2, zj, t)−h(xi+1/2, zj, t)
t

dcx dcz+
�(ȳ
(t
n

i+1/2, j

n

(1−eh)
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gȳ

�
+

ȳ
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�(y6
(x
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n
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where h= (t− tn)/t. The first bracketed term on the right-hand side defines [(uy/(x ]i+1/2, j
n and

the second bracketed term on the right-hand side defines [(uy/(z ]i+1/2, j
n . Therefore, the above

equation can be re-written as follows:

&�
−�

&�
−�

f(xi+1/2, zj, t)−h(xi+1/2, zj, t)
t

dcx dcz=
!�(yu
(x

n
i+1/2, j

n

−
�(yu
(x

n
i+1/2, j

n "
k eh

×
!�(ȳ
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n "
(1−eh) (103)

Similarly, the first moment of the difference equation (101) with respect to cx gives
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−�
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−�
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t
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(1−eh) (104)
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With the exception of the time derivative terms, all the other bracketed terms on the right-hand
side of Equations (103) and (104) have already been determined. In this paper, the evaluation
of the constant but unknown time derivatives on the right-hand side of Equations (103) and
(104) is based on the compatibility conditions so as to ensure that the scheme conserves both
mass and momentum.

In reality, the compatibility equations requires that the left-hand side of Equations (103) and
(104) be zero at every instant. This would be the case if each of the bracketed terms on the
right-hand side of Equations (103) and (104) were zero. Setting the second bracketed terms on
the right-hand side of Equations (103) and (104) to zero solves for the unknown times
derivatives. However, the first bracketed terms on the right-hand side of Equations (103) and
(104) are zero only if y and u are at least C1 continuous in the direction normal to the cell
boundary. Therefore, in general it is not possible to ensure that the compatibility conditions
are satisfied at every instant. However, it is possible to satisfy the compatibility conditions (i.e.,
mass and momentum conservation) in an average sense over a time step. This is accomplished
as follows:

& tn+Dt

t n

&�
−�

&�
−�

h( (xi+1/2, zj, t)− f(xi+1/2, zj, t)
ti+1/2, j

M dcxdcz dt=0 (105)

Insertion of (101) into expression (105) with the restriction that in the time interval t� [tn, tn+
Dt ] the collision time t is constant followed by integration of the resulting expression gives
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n +
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�
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·(V( cx

−)i+1/2+ , j
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+d
��(F
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�
i+1/2− , j
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·(Ycx

+)i+1/2− , j
n +

�(F
(x

�
i+1/2+ , j

n

·(Ycx

−)i+1/2+ , j
n n

(106)

where a= − (1−e−Dt/t)/k, b= (−Dt+2t(1−e−Dt/t)−Dt e−Dt/t)/k and b= (−t(1−e−Dt/t)
+Dt e−Dt/t)/k and k=Dt−t(1−e−Dt/t). The matrices in Equation (106) are given in Ap-
pendix B.

3.3. Formulation of the Boltzmann based shallow water model

Equation (101) gives the discrete model of the Boltzmann equation. The aim of this section is
to formulate the numerical model for shallow water equation using this discrete Boltzmann
equation.
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Integrating Equations (63) and (64) in a numerical cell (i, j ) from the interface xi−1/2 to
xi+1/2, zj−1/2 to zj+1/2 and time from tn to tn+1 and combining gives& xi+1/2

xi−1/2

& zj+1/2

zj−1/2

( f n+1− f n) dz dx=
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t n
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+
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t n
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( fj−1/2− fj+1/2) dx dt+
& xi+1/2

xi−1/2

& zj+1/2

zj−1/2

& tn+1

t n

(S0x−Sfx)
(f*
(c

dt dz dx

(107)

Taking the zero moment, first moment in cx, and first moment in cy of Equation (107) and
writing the result in vector form gives the following difference equations for two-dimensional
shallow water problems:

Wi, j
n+1−Wi, j

n =
1

Dz Dx
& tn+1

t n

& zj+1/2

zj−1/2

(Fi−1/2−Fi+1/2) dz dt

+
1

Dz Dx
& tn+1

t n

& xi+1/2

xi−1/2

(Gj−1/2−Gj+1/2) dx dt+
1

Dz Dx
& xi+1/2

xi−1/2

& zj+1/2

zj−1/2

& tn+1
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S dt dz dx

(108)

where
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In addition, Dx=xi+1/2−xi−1/2, Dz=zj+1/2−zj−1/2, Dt= tn+1− tn and Wi, j
n is the average

value of W in the cell (i, j ) at time n. Physically, F represents the mass and momentum fluxes
along x, G represents the mass and momentum fluxes along x, and S represents the net
external forces along x and z.
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The vector Wi, j
n in Equation (108) is known from the data reconstruction. In addition, the

first and second integrals on the right-hand side of Equation (108) are obtainable from the
discrete Boltzmann equation (i.e., Equation (101)). That is, the sole reason for deriving the
discrete Boltzmann equation (101) is to evaluate the flux terms (i.e., the first and second
integral terms) on the right-hand side of Equation (108). For example, the mass and
momentum flux at i+1/2 is obtained from the difference from of the Boltzmann equation as
follows:
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t n
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Invoking the difference form of the Boltzmann equation (101) leads to the following:
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where a=Dt−t(1−e−Dt/t), g= (Dt2/2)−tD−t2(1−e−Dt/t) and a, b, d and k are as defined
earlier. The integration of the right-hand side of Equation (110) can be carried out using the
identities provided in Appendix B. This completes the evaluation of the x-mass and momen-
tum fluxes (i.e., 	t n

tn+1 	zj−1/2

zj+1/2 Fi+1/2 dz dt) for all i. It must be emphasized that all the flux terms
on the right-hand side of Equation (110) involve known quantities from time level n. The
z-mass and momentum fluxes (i.e., 	t n

tn+1 	xi−1/2

xi+1/2 Gj+1/2 dz dt) for all j can be obtained in an
analogous manner to that of the x-mass and momentum fluxes.

At this stage, the only remaining unknown on the right-hand side of Equation (108) is
	xi−1/2

xi+1/2 	zj−1/2

zj+1/2 	t n
tn+1

S dt dz dx. Using a first-order approximation, one obtains the following
result:

& xi+1/2

xi−1/2

& zj+1/2

zj−1/2

& tn+1

t n

S dt dz dx=Si, j
n Dx Dz Dt (111)

Of course higher-order approximations could be adopted. This topic will be the subject of later
study when we deal with flows where the gravitational and friction terms that comprise S are
the dominant terms in the momentum equations. For the present, however, the main objective
is to test the capability of the Boltzmann scheme in resolving complex flow features, such as
discontinuities and extreme expansion waves and the interactions of discontinuous and
expansion waves. In the vicinity of these flow features, S is small in comparison with the
inertia forces. In fact, comparison of numerical test results with measured data from dam
break laboratory experiments in the presence of S show good agreement (see Figures 8–13).

3.4. Entropy condition

Equation (31) proves that the analytical solution of the Boltzmann equation satisfies the
entropy inequality. It is essential to show that the numerical solution of the Boltzmann
equation also satisfies the entropy inequality. In fact, this proof has been performed by Xu et
al. [4]. The result is

s]−
1
t

& Dt

0

&�
�

&�
�

(h− f )

:
(F(
(z

·Mt−

�(F(
(z

·M
n2

2
t2

;
dcx dcz dt=O(Dt)3]0 (112)

Therefore, the Boltzmann scheme produces a unique and physically realizable solution. In fact,
the numerical examples section shows that unphysical solutions such as expansion shocks are
automatically suppressed.
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3.5. Main steps in the computer code

The solution progresses from time level n to the level n+1 as follows:

From the previous time step calculation, the vector Wi, j
n = (y, yu, y6)i, j

n isStep 0
known in each cell center (i, j ). This vector is stored for one time step.

Step 1 The x and y slopes of (y, yu, y6)n within each cell are calculated from Equa-
tions (37) and (38).
The slopes obtained in Step 1 along with Equation (36) are used to calculateStep 2
(y, yu, y6)n at each cell interface.
The values of (ȳ, yu, y6)n at each cell interface are calculated using EquationsStep 3
(50)–(54).

Step 4 The values obtained in Step 3 along with Equations (56)–(58) are used to
calculate the x and y of slopes (ȳ, yu, y6)n within each cell.
The slopes obtained in Steps 1 and along with Equation (106) are used toStep 5
calculate the time derivative of (ȳ, yu, y6)n at each cell interface.

Step 6 The quantities available from Steps 1–5 along with Equation (110) are used
to calculate x-mass and momentum flux at all cell interfaces that are orthog-
onal to x. The z-mass and momentum flux at all cell interfaces that are
orthogonal to z are calculated in an analogous manner.
The slope S0 is given from the geometry of the channel bottom. The slopeStep 7
Sf is obtained by inserting (y, yu, y6)i, j

n into the Manning equation, where the
Manning coefficient is given.

Step 8 The values from Step 8 along with Equation (111) are used to calculate the
integral of the external forces from n to n+1.
The quantities available from Steps 0, 6, and 8 along with Equation (108)Step 9
are used to calculate the solution vector Wi, j

n+1.

4. NUMERICAL DEMONSTRATION AND DISCUSSION

In this section, the Boltzmann based numerical model is shown to accurately solve open
channel flow problems, including (i) strong shock waves; (ii) extreme expansion waves; (iii) a
combination of strong shock waves and extreme expansion waves, and (iv) one- and two-
dimensional dam break waves. The comparison between the numerical and analytical solutions
(or measured data) is based on the L1

n error of the depth, which is defined at any time tn as
follows:

L1
n=

1
NxNz

%
Nx

i=1

%
Nz

j=1

��(yi, j
n )numerical− (yi, j

n )analytical�
(yi)analytical

�
(113)

where Nx is the number of grid points in the x-direction and Nz is the number of grid points
in the z-direction. When the analytical solution is not available, the ‘exact’ numerical solution
can be used to judge the accuracy of the solution. The ‘exact’ numerical solution is obtainable
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by systematically reducing the grid size until the solution ceases to change (i.e., converges). In
cases where experimental results are available, the yexperimental can be submitted for yanalytical in
Equation (113).

Note the grid size, Courant number, Manning coefficient, and channel slope used in each
example are indicated in the relevant figures and thus will not be repeated in the text. In
addition, this paper uses Manning’s formula to compute the bed friction resistance.

4.1. The strong shock problem

To test the resolution capability of the Boltzmann based model in modeling discontinuous
surfaces, the convergent flow in a rectangular frictionless channel with a length of 400 m and
infinite width is modeled. The initial condition is as follows:

y=1.0 m, 6=4.0 m s−1, x5200 m; and y=1.0, 6= −4.0 m s−1, x]200 m

The upstream and downstream boundary conditions are: y(0, t)=y(0, 0); y(L, t)=y(L, 0);
yu(0, t)=yu(0, 0); yu(L, t)=yu(L, 0), where L is length of the computational domain. L is
chosen long enough so that the undisturbed conditions remain valid at x=0 and x=L. To
avoid repetition, it suffices to state that the same boundary conditions will be utilized in (i) the
extreme expansion wave problem, (ii) the one-dimensional dam break problem, (iii) the
multistage problem, and (iv) the two-dimensional dam break problem.

The results of the simulation as well as the analytical solution at t=40 s are shown in Figure
2. The figure shows that the proposed model accurately reproduces shock wave fronts. The L1

n

error norm is only 0.13 per cent for Courant number of 0.6.

Figure 2. Water depth and flux per unit width for the strong shock wave problem (Dx=1.0 m, Cr=0.6,
t=40 s, Sf=0.0, S0=0.0).
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4.2. The extreme expansion wa6e problem

This example tests the accuracy of the Boltzmann model in modeling smooth water profiles.
The divergent flow in a rectangular frictionless channel with a length of 300 m and infinite
width is modeled. The following initial condition is considered:

y=1.0 m, 6= −2.0 m s−1, x5150 m; and y=1.0 m, 6=2.0 m s−1, x]150 m

In gas dynamics, this problem is called the Sjögreen problem [20]. The results of the
simulation and the exact solution at t=20 s with a Courant number of 0.6 are shown in Figure
3. The figure shows that the proposed model produces results that are highly accurate with the
L1

n error being 0.3 per cent.

4.3. The combination of expansion wa6es and shocks

One-dimensional dam break problems and the multistage problem are used to test the accuracy
of the proposed model in modeling problems containing simultaneously severe shocks and
extreme expansion waves.

4.3.1. The one-dimensional dam break problem. The dam break flow in a rectangular frictionless
channel with a length of 2000 m and infinite width is modeled. The dam is located at x=1000
m. The severity of the shock and expansion waves in a dam break problem is dependent on the
ratio of the initial water depth downstream of the dam to the initial water depth upstream of
the dam (R). In the sample cases, R values of 0.5, 0.05, and 0.005 are employed. In addition,
to test the influence of Courant number on the accuracy of the scheme, discretization with
Courant numbers of 0.1, 0.6, and 0.9 are used respectively. The results of these test cases are
shown in Figures 4 and 5. It is clear from these figures that the numerical results are very close
to the analytical solution for all depth ratios and all Courant numbers. In addition, all the L1

n

Figure 3. Water depth and flux per unit width for the extreme expansion wave problem (Dx=1.0 m,
Cr=0.6, t=20 s, Sf=0.0, S0=0.0).
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Figure 4. One-dimensional dam-break problem modeling for different values of R and Courant number
(Dx=1.0 m, t=50 s, Sf=0.0, S0=0.0).

Figure 5. One-dimensional dam-break problem modeling: shock resolution for different values of
Courant number (Dx=1.0 m, t=50 s, Sf=0.0, S0=0.0).

error norms are less than 0.4 per cent. Furthermore, Figure 5 shows that the shock resolution
is quite insensitive to the Courant number and the shock front is spread over about 3Dx, which
is very little smearing. Recall that Nyquist’s theorem states that a gird of size Dx cannot
resolve a structure smaller than 2Dx.

In is important to ensure that the BGK scheme correctly models energy losses at jumps and
bores. The energy loss at a bore is (y2−y1)3/4y1y2, where y1 and y2 are the water depth
upstream and downstream of the bore respectively. Referring to the results in Figure 4 for
R=0.05, the energy loss based on the analytic solution is 2.8456 m and the energy loss based
on the numerical solution is 2.8367 m (i.e., an error of 0.3 per cent). In addition, referring to
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the results in Figure 4 for R=0.005, the energy loss based on the analytical solution is
7.5656 m and the energy loss based on the numerical solution is 7.5120 m, so that the error
is 0.7 per cent.

4.3.2. Multistage problem. The Boltzmann procedure was also tested on the more complex
flow profile of a multistage problem. The case studied was used by Yang et al. [35] to
compare the accuracy of shock-capturing finite difference and finite element schemes. The
multistage problem is complex in the sense that its solution consists of multiple shock
waves, multiple expansion waves and their interaction as well as merging of shock and
expansion waves. The computational domain consists of a frictionless, infinitely wide, 500-
m long channel. The initial condition of the multistage problem is as follows:

y=100.0 m, 6=0.0 m s−1 at t=0 and x5x5250 m

y=1.0 m, 6=0.0 m s−1 at t=0 and 250 m5x5350 m

y=10.0 m, 6=0.0 m s−1 at t=0 and x]350 m

A Courant number of 0.6 is used. The simulation results at t=1 s (i.e., before the interac-
tion of the shock waves) and t=5 s (i.e., after the shock waves have interacted) are shown
in Figure 6. In addition, the numerical and near-exact solutions (obtained by refined steps)
at t=5 s are given in Figure 7. The results show that the multiple shocks and expansion
waves are well resolved and the proposed model is capable of modeling complex interaction
of shock waves. The L1

n error norm for this example is 0.3 per cent.

Figure 6. Multistage modeling at t=0, 1, and 5 s (Dx=1.0 m, Cr=0.6, Sf=0.0, S0=0.0).
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Figure 7. Multistage modeling at t=5.0 s (Dx=1.0 m, Cr=0.6, Sf=0.0, S0=0.0).

4.4. Comparison with measured data

The objective of this example is to compare the numerical results of the proposed BGK model
with measured data from dam break laboratory experiments, which were carried by Soulis [36].
These experiments were performed in a rectangular wooden flume lined with plastic-coated
plywood, 122 m wide, with a bottom slope of 0.005. The model dam was placed at mid-section,
impounding water to a depth of 0.3048 m. In addition, the experiments were carried out using
smooth (i.e., n=0.009) and rough (i.e., n=0.05), where n is Manning’s coefficient.

The numerical results are generated by the proposed BGK model, where the friction force
is represented by Manning’s formula. The initial conditions upstream of the dam (i.e., x50)
are as follows:

y(x, t=0)=0.3048+0.005x and u(x, t=0)=0 (114)

where the units of both x and y is meters and x is the distance along the channel measured
from the dam site. The initial conditions downstream of the dam (i.e., x\0) are as follows:

y(x, t=0)=0.001 m and u(x, t=0)=0 m s−1 (115)

In reality, for x\0 the water height y(x, t=0)=0.00 and not y(x, t=0)=0.01. However, it
is well known that the true dry bed conditions are difficult to treat numerically because of the
infinite tangent to the depth profile. Therefore, the small value of 0.001 m is adopted in the
calculations. In the calculation, the upstream boundary conditions are: flow velocities are set
to zero; water depths are determined by (y/(x=0. In addition, the downstream-end boundary
conditions are: flow velocities are determined by (u/(x=0; water depths are determined by
(y/(x=0. The computational grid size is Dx=0.762 m. Stable results are achieved for all time
steps satisfying Cr50.6. For Cr\0.6, numerical instabilities were observed. This reduction in
the stability domain is due to the explicit integration of the friction term.
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For the smooth case (n=0.009) comparisons of computed water depths with experiments at
three different stations, namely x= −30.5, 0.0, and 24.4 m, are shown in Figures 8–10. In
addition, Figures 11–13 show comparisons for the high friction case (i.e., n=0.05) at
z= −30.5, 0.0, and 24.4 m. Comparison of numerical test results with measured data from
dam break laboratory experiments show good agreement. In addition, the location and time of
the bore front is well modeled by the BGK scheme (see Figure 10).

4.5. The two-dimensional dam break problem

Some numerical modeling results of the two-dimensional dam break problem have been
reported [37–40]. To test the capability of the present scheme to resolve two-dimensional
shock waves, a two-dimensional non-symmetric dam break problem, which is exactly the same

Figure 8. Comparison with measured results at x= −30.5 m (S0=0.005, n=0.009, Cr=0.6, Dx=0.762
m).

Figure 9. Comparison with measured results at x= −0.0 m (S0=0.005, n=0.009, Cr=0.6, Dx=0.762
m).
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Figure 10. Comparison with measured results at x=24.4 m (S0=0.005, n=0.009, Cr=0.6, Dx=0.762
m).

Figure 11. Comparison with measured results at x= −30.5 m (S0=0.005, n=0.05, Cr=0.2, Dx=0.762
m).

as that used by Fenemma and Chaudhary [38], is used. The computational domain is
(x, z)� [0, 200 m]. The breach of the dam is 75 m wide and initial water surface is y(t=
0, x, z)=10 m, when x5100 and 5.0 m and when x\100 m. The upstream and downstream
boundaries are undisturbed. The computational results for time 7.2 s after the dam failure is
shown by the three-dimensional plot in Figure 14. This figure shows that the numerical
solution is stable and the shock front is well resolved. Figure 15 plots the contour of the water
depth. Both the steep gradient in the three-dimensional plot and the high density of the
contour lines in the two-dimensional plot highlights the capability of the present model to
resolve two-dimensional shock waves.
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Figure 12. Comparison with measured results at x=0.0 m (S0=0.005, n=0.05, Cr=0.2, Dx=0.762 m).

Figure 13. Comparison with measured results at x=24.4 m (S0=0.005, n=0.05, Cr=0.2, Dx=0.762
m).

4.6. Remarks on expansion shocks and their absence from the current computation

It is important to emphasize that no entropy fix or artificial diffusion has been added to the
present numerical model. Yet none of the computational examples admit unphysical shocks
(i.e., expansion shocks). This is expected as Equation (112) shows that the Boltzmann based
numerical model satisfies the entropy inequality. On the other hand, solutions based solely on
the shallow water equations without consideration of an entropy condition are prone to the
development of expansion shocks, unless a carefully designed numerical entropy fix term is
added [28,30,41]. However, these entropy fixes lack physical basis and thus may not always be
successful [21,42]. For example, Jha et al. [42] found that the entropy fix suggested by Alcrudo
et al. [41] could not avoid the problem of expansion waves. In this regard, Jha et al. [42, p. 881]
wrote:
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Figure 14. Surface plot of two-dimensional non-symmetric dam-break problem modeling (Dx=Dz=1.0
m, Cr=0.8, t=7.1 s, Sf=0.0, S0=0.0).

These vertical drops in the water-surface profile are due to violation of the entropy-inequality
condition, which is obviously not remedied by using a constant value of d . . . as suggested by
Alcrudo et al. [41].

Note in the dam break computation the expansion shock usually manifests itself as a vertical
drop in the water-surface profile at the location of the dam.

Expansion shocks are difficult to avoid and have been observed in a number of papers. For
example, an expansion shock appeared in (i) the McCormack scheme solution (see figures 1-c
and 1-d in Reference [41]), (ii) the Osher scheme solution (see figure 3 in Reference [43]), (iii)
the Roe scheme solution (see figures 4 and 5 in Reference [42]), and (iv) the flux difference
splitting (FDS) scheme solution (see figure 3 in Reference [44]). Therefore, the fact that the
current scheme prevents the formation of expansion shocks in itself a useful result.

5. CONCLUSIONS

A finite volume BGK model for one- and two-dimensional unsteady open channel flows has
been derived. The proposed model is found to have several advantages. First, the fact that the
advective operator in the BGK model is linear helps avoid complex Jacobian matrix computa-
tion. Second, the scalar character of the Boltzmann distribution function means that the BGK
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model is easily extended to multidimensional flows. Third, the collision function in the
Boltzmann equation ensures that the BGK model satisfies the entropy condition and thus
prevents the formation of unphysical shocks in open channel solutions.

The BGK scheme was applied to a range of problems with complex features such as strong
shock waves, extreme expansion waves, interactions between strong shock waves and extreme
expansion waves, and one- and two-dimensional dam break waves. Comparisons with analyt-
ical and fine discretization solutions confirm the high accuracy as well as the robustness of the
BGK scheme. All the computational results are free of spurious oscillations and unphysical
shocks (i.e., expansion shocks). The stability requirement of the BGK scheme when friction is
zero is Cr51. Comparison of numerical test results with measured data from dam break
laboratory experiments show good agreement. When friction is present, stable results are
achieved for Cr50.6. For Cr\0.6, numerical instabilities were observed. This reduction in the
stability domain is due to the explicit integration of the friction term.

Although BGK schemes are very promising, they are still in the developmental stage. More
research is required to explore the viability of BGK type models for more complex engineering
problems encountered in hydraulics and environmental fluid mechanics.

Figure 15. Contour plot of two-dimensional non-symmetric dam-break problem modeling (Dx=Dz=
1.0 m, Cr=0.8, t=7.1 s, Sf=0.0, S0=0.0).
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APPENDIX A. NOMENCLATURE

normalizing coefficientA
particle velocity vectorc
particle velocity in x- and z-directions respectivelycx, cz

Courant numberCr

complementary error functionerfc
f non-equilibrium particle distribution function

the mass and momentum fluxes along the x-directionF
external force components acting on particlesF

g acceleration due to gravity
the mass and momentum fluxes along the z-directionG
local equilibrium particle distribution functionh
unique interface equilibrium particle distribution functionh(
negative value of entropyH
Heaviside functionH( . )
integer denoting spatial cell locationi, j
total channel lengthL

L1 norm error
particle massm

M = (1, cx, cz, cx
2 +cz

2)T

integer denoting time nodal locationn
p the depth (area) average water pressure
R the ratio of the initial water depth downstream of the dam to the initial

water depth
S extensive entropy property

slope vector of the channelS0

friction slope vector of the channelSf

time, time at nDtt, tn

transposeT
macroscopic velocities of the fluid in x- and z-directions respectivelyu, 6
macroscopic fluid velocity vectorv
time stepDt

W vector whose components are water depth and flow rate, i.e., (y, yu, y6)T

space co-ordinates(x, z)
motion paths of particlesX, Z

(Dx, Dz) spatial grid size
flow depth of flowy
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Greek letters
b, g dummy variables

variation operatord

Boltzmann constantk

Lagrange multipliersl0–5

viscosityn

r density of the fluid
entropy productions

relaxation timet

txz shear stress at face z along z
F

=
�

−
u2+62

gy
,

2u
gy

,
26
gy

, −
1

gy
�

APPENDIX B. USEFUL RELATIONSHIPS

The matrices in Equation (106) are given as follows:

[G( ]i+1/2, j
n =

&�
�

&�
−�

h( i+1/2, j
n MM dcx dcz (116)

[G( cx

+]i+1/2, j
n =

&�
−�

&�
0

h( i+1/2, j
n MM dcx dcz (117)

[G( cx

−]i+1/2, j
n =

&�
−�

& 0

−�

h( i+1/2, j
n MM dcx dcz (118)

[Gcx

−]i+1/2+ , j
n =

&�
−�

& 0

−�

hi+1/2+ , j
n MM dcx dcz (119)

[Gcx

+]i+1/2− , j
n =

&�
−�

&�
0

hi+1/2− , j
n MM dcx dcz (120)

[Y( ]i+1/2, j
n =

&�
−�

&�
−�

h( i+1/2, j
n czMM dcx dcz (121)

[Y( cx

−]i+1/2+ , j
n =

&�
−�

& 0

−�

h( i+1/2+ , j
n czMM dcx dcz (122)

[Ycx

+]i+1/2− , j
n =

&�
−�

&�
0

hi+1/2− , j
n czMM dcx dcz (123)
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[V( ]i+1/2, j
n =

&�
−�

&�
−�

h( i+1/2, j
n cxMM dcx dcz (124)

[V( cx

+]i+1/2, j
n =

&�
−�

&�
0

h( i+1/2, j
n cxMM dcx dcz (125)

[V( cx

−]i+1/2, j
n =

&�
−�

& 0

−�

h( i+1/2, j
n cxMM dcx dcz (126)

[Vcx

−]i+1/2+ , j
n =

&�
−�

& 0

−�

hi+1/2+ , j
n cxMM dcx dcz (127)

[Vcx

+]i+1/2− , j
n =

&�
−�

&�
0

hi+1/2− , j
n cxMM dcx dcz (128)

The evaluation of the right-hand side of the above equations requires knowledge of the various
moments of h. These moments are provided below.

B.1. Moments of h at interface xi+1/2 for cx\0

[m0]i+1/2− , j
n =

&�
−�

&�
�

hi+1/2− , j
n dcx dcz=

�y
2

erfc
�

−
u
gy
�n

i+1/2− , j

n

(129)

[m1]i+1/2− , j
n =

&�
−�

&�
0

cxhi+1/2− , j
n dcx dcz=

�yu
2

erfc
�

−
u


gy

�
+

y
gy
2

e−u2/gyn
i+1/2− , j

n

(130)

[mm ]i+1/2− , j
n =

&�
−�

&�
0

cx
mhi+1/2− , j

n dcx dcz= [umm−1]i+1/2− , j
n +

1
2

g(m−1)[ymm−2]i+1/2− , j
n

Öm]2 (131)

where the subscripts m0, m1, and mm are the zeroth, first and mth moments.

B.2. Moments of h at interface xi+1/2 for cxB0

[m0]i+1/2+ , j
n =

&�
−�

& 0

−�

hi+1/2+ , j
n dcx dcz=

�y
2

erfc
� u

gy
�n

i+1/2+ , j

n

(132)

[m1]i+1/2+ , j
n =

&�
−�

& 0

−�

cxhi+1/2+ , j
n dcx dcz=

�yu
2

erfc
� u


gy

�
−

y
gy
2

e−u2/gyn
i+1/2+ , j

n

(133)
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[mm ]i+1/2+ , j
n =

&�
−�

& 0

−�

cx
mhi+1/2+ , j

n dcx dcz

= [umm−1]i+1/2+ , j
n +

1
2

g(m−1)[ymm−2]i+1/2+ , j
n Öm]2 (134)

B.3. Moments of h at interface xi+1/2 for −�BcxB�

&�
−�

&�
−�

hi+1/2+ , j
n dcx dcz= [y ]i+1/2+ , j

n (135)

[E(cx)]i+1/2+ , j
n =

&�
−�

&�
−�

cxhi+1/2+ , j
n dcx dcz= [yu ]i+1/2+ , j

n (136)

[E((cx−u)m)]i+1/2+ , j
n =

&�
−�

&�
−�

(cx−u)mhi+1/2+ , j
n dcx dcz

=

Á
Ã
Í
Ã
Ä

1×3 · · · × (2p−1) · · · (m−1)y
�'gy

2
�m

if m is even

0 if m is odd
(137)

where E is the expected value.
The moments of h( have analogous forms to those of h. The only difference is that ȳ and ū

are used instead of u and y.
It is important to emphasize that, at local equilibrium, cx and cz are statistically independent.

Therefore

h( (cx, cz)=h( (cx)h( (cz) and h(cx, cz)=h(cx)h(cz) (138)

This is useful when finding integrals of h and h( that involve products of cx and cz. For example

&�
−�

&�
0

cz
pcx

m[h(cx, cz)]i+1/2− , j
n dcx dcz=

�&�
−�

cz
ph i+1/2− , j

n dcz
�

Term A

�&�
0

cx
mhi+1/2− , j

n dcz
�

Term B (139)

Terms A and B can be computed from Equations (137) and (131) respectively. In fact, all other
moments can be generated from relationships (131), (134), and (137).
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APPENDIX C. MASS AND MOMENTUM EQUATIONS

C.1. Consistency of the Boltzmann model with mass balance

The mass balance equation for the two-dimensional open channel flow is obtained by (i)
integrating Equation (1) with respect to cx and cz from minus infinity to plus infinity, (ii)
invoking Equations (3) and (4), (iii) performing integration by noticing Equation (8), and (iv)
utilizing the fact that f and fc have compact support. Note, f, fc and fc·c have compact
support because

lim f=0, lim fc=0, and lim fc·c=0 when �c�[� (140)

Physically, Equation (140) states that there are zero particles whose velocity magnitude is
infinite. If we let t=et̂, where e is a small parameter, the result of the integration is

(y
(t

+9 ·(vy)=et̂
! (
(t

�(y
(t

+9 ·(vy)
n

+9 ·
�((vy)
(t

+9 ·
�

vvy+
(y
2

I
�

−Fy
n"

(141)

Both of the terms in brackets on the right-hand side of this equation are O(e)—the first from
the self consistency of the present equation, the second as will be shown subsequently in the
derivation of the momentum equation. Thus, neglect of these terms is an approximation of
second-order smallness that results in mass conservation (32). Equation (141) shows that the
Boltzmann model is consistent with the mass balance equation in the two-dimensional
unsteady channel flow.

C.2. Consistency of the Boltzmann model with momentum balance

Again, let t=et̂, where e is a small dimensionless quantity, expand f as power series in e and
substitute the result in Equation (1) to obtain
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The momentum equation is obtained by multiplying Equation (142) by c, integrating the result
in the particle velocity space, and invoking Equations (9) and (3). The result is
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Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 449–494



BGK MODEL FOR OPEN CHANNEL 493

where

F= −g(Sf−S0) (144)

Note that the last three rows of Equation (143) are all of O(e2) in that they involve derivatives
of the conservation equations. Thus, these may be neglected in comparison to the left-hand
side and the first grouping on the right-hand side to obtain Equation (33). Therefore, the
Boltzmann equation provides a second-order accurate approximation to the momentum
equation for analysis of open channel flow.
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